| 1. Which of the following is the hardest constituent of steel?a) Ledeburiteb) Austenitec) Bainited) Martensite | |---| | 2. Iron possesses BCC crystal structure up to (in degree centigrade)?a) 1539b) 768c) 910d) 1410 | | 3. Iron possesses BCC crystal structure above (in degree centigrade)?a) 1539b) 768c) 910d) 1410 | | 4. Iron possesses FCC crystal structure above (in degree centigrade)? a) 1539 b) 768 c) 910 d) 1410 | | 5. Which of the following form of iron is magnetic in nature? a) α b) δ c) γ d) λ | | 6. For steel, which one of the following properties can be enhanced upon annealing?a) Hardnessb) Toughnessc) Ductilityd) Resilience | | b) Water c) Oil d) Furnace | |---| | 8. In normalizing, cooling is done in which of the following medium?a) Airb) Waterc) Oild) Furnace | | 9. Mild steel can be converted into high carbons steel by which of the following heat treatment process? a) Annealing b) Normalizing c) Case hardening d) Nitriding | | 10. Upon annealing, eutectoid steel converts to which of the following?a) Perliteb) Cementitec) Austenited) Martensite | 1) The purpose of normalizing steel is to **D)** Increase the toughness and reduce brittleness A) Remove induced stressesB) Improve machinability **C)** Soften the steel 7. In Annealing, cooling is done in which of the following medium? a) Air | 2) A carbon steel piece is heated just above 730 Degree Centigrade, maintained at that temperature for a few hours and then slowly cooled. What heat treatment process is carried out? | |---| | A) Normalizing B) Casehardening C) Hardening D) Annealing | | | | 3) A given component cracked after heat treatment. What can be the possible reason? | | A) It was heated for long time B) It was not properly cleaned before heating C) It was suddenly cooled in brine D) It was slowly cooled in air | | 5) To reduce internal stresses of a hardened tool, the method of heat treatment generally applied is | | A) StabilisingB) AnnealingC) NormalizingD) Tempering | | | | 9) After heating up to required hardening temperature, why must tool steels be quenched? | | A) To induce internal stresses B) To build up hardening structure C) To fall off the scale D) To retain it to its original structure | | B) To make good appearance on the component | | |---|---| | C) To income and advantage of the second | | | C) To increase strength of the metal | | | D) To make the metal rust-proof | | | | | | 15) The instrument used to measure high temperatu | re in the furnace is | | | | | A) Thermometer | | | B) Barometer | | | C) Colorimeter | | | D) Pyrometer | | | | | | 19) The purpose of heat treatment is | | | | | | A) To change the mechanical properties of steel | | | B) To change the internal structure of steel | | | C) To change the appearance of the component | | | D) To change the chemical properties of steel | | | | | | | | | 20) One component of C50 steel is heated to 830 Degree Centigrade, soaked it for some to Degree Centigrade and quenched in oil. Name this process of heat treatment. | ime and then quenched in oil. Again it is heated to | | | | | A) Annealing | | | | | | B) Normalizing | | | | | **11)** Heat treatment of metals is necessary | 21) Which one of the following groups of quenching media is in order of their severity of the cooling rate, i.e. from slow to rapid cooling | |---| | A) Oil, forced air, brine solutionB) forced air, oil, brine solutionC) Brine solution, oil, forced air | | D) Forced air, brine solution, oil | | 23) Which one of the following structures of steel is obtained due to the drastic cooling from the austenite structure? | | A) Pearlite B) Cementite C) Matensite D) Troostite | | AND IT COLUMN TO THE TELEVISION OF THE | | 24) Which one of the following processes by which steel is heated to the required temperature and then cooled slowly in the furnace itself? | | A) Tempering B) Hardening C) Nitriding D) Annealing | | | | 25) What is the main purpose of annealing? | | A) To improve machinability B) To improve magnetism C) To increase hardness D) To increase toughness | | 26) During heat treatment when carbon is dissolved to form solid solution, it is known as | |--| | | | A) FerriteB) PearliteC) AusteniteD) Cementite | | | | | | 38) After hardening process, the metal becomes more hardened and also will become more | | | | A) Brittle B) Ductile C) Malleable D) Tough | | | | 5. Cast iron has carbon | | i. <2.0% | | ii. > 7% | | iii. > 2.0% | | iv. None | | 6. Low alloy steels has carbon | | i. ≤1 % | | ii. ≤2 % | | iii. ≥2 % | | iv. None | | 8. Lower critical temperature (A_1) in iron carbon diagram is | | i. 527°C | | ii. 727 ⁰ C | | iii. 911 ⁰ C | | iv. None | | | | | | 12. Fastest cooling will be obtained by cooling in | |---| | i. Air ii. Water iii. Brine iv. None | | 14. Hypo-eutectoid steel contains carbon | | i. <0.022 % ii. < 0.770 % iii. < 6.77 % iv. None | | 15. Hypereutectoid steel contains carbon | | i. < 022 % ii. < 0.770 % iii. > 0.770 iv. None | | 16. The micro-structure of α ferrite iron is | | i. FCC ii. BCC iii. HCP iv. None | | 17. Which micro-structure γ -Austenite has | | i. BCC ii. FCC iii. HCP iv. None | | 18. δ -Ferrite has which micro-structure | | i. HCP ii. FCC iii. BCC iv. None | - 19. Referring to transformations in iron carbon diagrams, super-cooling takes place when - i. Transformations take place at temperatures below the predicted by the phase diagram - ii. Transformations take place at temperatures equal to the predicted by the phase diagram - iii. Transformations take place at temperatures above the predicted by the phase diagram - iv. None - 20. Super-heating applies to transformations in iron carbon diagrams when - i. Transformations take place at temperatures below the predicted by the phase diagram - ii. Transformations take place at temperatures equal to the predicted by the phase diagram - iii. Transformations take place at temperatures above the predicted by the phase diagram - iv. None - 21. TTT diagrams stand for - i. Time, temperature and transformation - ii. Temperature, transformation and time - iii. Temperature, time and transformation - iv. None - 22. TTT diagrams are drawn as a family of - i. V-shaped curves - ii. Z-shaped curves - iii. S-shaped curves - iv. None - 23. At low temperatures, transformations are - i. Slow - ii. Fast - iii. Neither fast nor slow - iv. None - 24. The growth of grain at low temperatures is - i. Neither fast nor slow - ii. Fast - iii. Slow - iv. None ## 25. Martensite is formed from Austenite on - i. Fast cooling - ii. Slow cooling - iii. Medium cooling - iv. None - **-** دمای استنیته کردن کدام عملیات حرارتی به درصد کربن قطعه وابسته نیست؟ - عملیات آنیل همدما عکس کدام عملیات حرارتی است؟ - نام دیگر عملیات حرارتی آنیل نفوذی چیست؟ - چرا مارتنزیت یک فاز نایایدار است؟ - **-** فریت ویدمن اشتیتن چطور حاصل می شود؟ - کدامیک از فولادهای آلیاژی زیر به آستنیته کردن بیشتری نیاز دارد؟ (فولاد آلیاژی با کاربید Cr₂₃C₆) و (فولاد آلیاژی با کاربید TiC) - **-** هدف از عملیات آنیل همدما چیست؟ - آنیل بین بحرانی برای چه نوع فولادهای بیشتر مورد استفاده قرار می گیرد؟ - مکانیزم آنیل نیمه بحرانی برای کاهش تنش پسماند چیست؟ - منشا تنش یسماند در قطعه چه می تواند باشد؟ - مكانيزم تشكيل بينيت پاييني چيست؟ - میزان سختی کدامیک فولاد سخت شده بیشتر است؟ (فولاد کربنی با ۰/۳ درصد کربن یا فولاد کربنی با ۰/۶ درصد کربن) - فاز کدام فولاد سخت شده زیر میکروسکوپ قابل تشخیص است؟(فولاد کربنی با ۰/۳ درصد کربن یا فولاد کربنی با ۰/۹ درصد کربن) - میزان آستنیت باقی مانده در فولاد ۱/۲ درصد کربن چقدر است؟ بیشتر از ۴۰ درصد یا بیشتر از ۳۰ درصد - چه عملیات حرارتی نیاز به اَستنیته کردن ندارد؟ - محدوده کدام عملیات حرارتی در حدود ۱۲۰۰ درجه سانتی گراد است؟ - درصورتی که فولادی آنیل شده با ۰/۴ درصد کربن دارای سختی ۲۰۰ مگاپاسکال باشد و با عملیات حرارتی آنیل همدما میزان پرلیت آن حدود ۷۵ درصد و با سختی به ۳۰۰ مگاپاسکال باشد. این میزان سختی معادل کدام فولاد آنیل شده است؟